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Introduction
Electroencephalogram (EEG) provides clinically relevant information for patient health
evaluation and comprehensive assessment of sleep [1]. EEG-based indices have been
associated with various health conditions and diseases, and hold promise as
biomarkers for brain health [2]. Increase in age has been associated with a range of
characteristics that exist within EEG signals recorded during sleep, such as:
fragmented sleep with higher N1 sleep, reduced slow-wave sleep, reduced REM
sleep, and decreased amount of sleep spindles and vertex waves [3]. Thus, EEG
signals show potential for encoding the physiological information that, with the correct
analysis, allows for the accurate assessment of age. Previous research have shown that
the age of patients can be predicted from magnetic resonance images (MRI) with a
mean absolute error (MAE) of 5 years [4] and from EEG with a MAE of 7.8 years [2].
The more the age assessment methodology is accurate, the more any deviation of the
assessed age (brain age; BA) from the real age (chronological age; CA) can then be
confidently utilized to provide deeper insights to supplement the current clinical
evaluation paradigm and ultimately in better understanding and realizing
individualized therapeutic pathways.

Conclusion
• We show the power of AI’s potential to exceed human

capabilities and perform tasks that humans cannot.
While clinicians can only grossly estimate or quantify the
age of a patient based on their EEG, this study shows an
AI model can predict a patient’s age with high precision.

• The model’s precision enables shifts in the predicted
age from the chronological age to express correlations
with major disease families and comorbidities.

• Since the AI model was trained to predict age, an
objective value that is not subject to label noise, any
divergence of the prediction from the target output is
associated with either signal artifact in the input data or
other underlying physiological conditions. This presents
the potential for identifying novel clinical phenotypes
that exist within physiological signals utilizing AI model
deviations.

Future Work
• Analyze additional patient health disorders and examine

their association with the BAI and ABAI.
• Attempt to achieve a larger separation between healthy

and diseased population such that a range of normal
and abnormal values of BAI and ABAI could be defined
and leveraged in order to affect the patients’
individualized diagnostic and therapeutic pathways.

• Overall, the results in this study provide initial evidence
for the potential of utilizing AI to assess the brain age of
a patient. Our hope is that with continued investigation,
research, and clinical studies, a brain age index will one
day become a diagnostic biomarker of brain health,
much like high blood pressure is for risks of stroke and
other cardiovascular disorders.
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The Dataset
• The dataset contained adult patients of ages 18-85 years old.
• Train set: 126,241 polysomnography (PSG) studies.
• Validation set: 6,638 PSG studies
• Test set: 1,172 PSG studies
• The test set contained the following patient information and Patient-Reported

Outcomes (PROs) :
• Age
• Sex
• BMI
• Apnea-hypopnea index (AHI)
• Arousal Index (ArI)
• Oxygen desaturation index (ODI)
• Epworth sleepiness score (ESS)
• Sleep efficiency (SE)

• History of depression (yes/no)
• Diabetes (yes/no)
• Hypertension (yes/no)
• Issues with memory and 

concentration (1-yes, 0-no)
• History of epilepsy/seizures 

(yes/no)
• History of strokes (yes/no)

The Brain Age Index
• The trained model can take a full night recording of 8 raw channels and output a prediction for the age of

the patient.
• The predicted age (BA) together with the CA were used to derive representative indices that could be

analyzed and correlated with different patient conditions.
• We’ve calculated the brain age index (BAI) using the following equation: 𝐵𝐴𝐼 = 𝐵𝐴 − 𝐶𝐴
• The BAI allows for the evaluation of the directionality of the deviation between the BA and CA.
• We’ve calculated the absolute brain age index (ABAI) using the following equation: A𝐵𝐴𝐼 = |𝐵𝐴 − 𝐶𝐴|
• The ABAI allows for the evaluation of patient populationsת that due to specific characteristics in their

recorded signals, the model was not able to accurately predict their CA.

Results
Overall Performance of the Brain Age Model

A Sample of Three Variable’s BAI Population Comparisons

Figure 2. Overall regression performance and BAI/ABAI populations. (a) The brain age model produced a
MAE value of 4.61 with a 95% bootstrap confidence interval (BCI) of [4.406, 4.811]. Furthermore, a Deming
regression for the BA and CA comparison produced a mean slope value of 1.076 with a BCI of [1.056, 1.098]
and a mean intercept value of -4.242 with a BCI of [-5.435, -3.1]. (b) The general population has a normally
distributed BAI with a mean of -0.04 and a standard deviation of 5.8. (c) The general population has a gamma
distributed ABAI with peak density at 1.29.
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Figure 3. Depression, diabetes, and hypertension BAI population comparison. Histograms and fitted
distributions of the BAI for each population group (see table 1 for a summary of the p-values and means of
each distribution). A statistically significant shift between the populations was observed. (a) The orange
distribution represents the depression group while the green distribution represents the no depression group.
(b) The orange distribution represents the diabetes group while the green distribution represents the no
diabetes group. (c) The orange distribution represents the hypertension group while the the green distribution
represents the no hypertension group.

A Sample of Three Variable’s ABAI Population Comparison

Summary of statistically significant binary variables for BAI/ABAI population comparison

BAI/ABAI ordinary least squares (OLS) analysis
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Methodology
The AI Model
In order to predict the age of a patient from the EEG signals, a deep convolutional
neural network (DCNN) was trained. The input to the model was the full night raw 8-
channel EEG and electrooculogram (EOG) montage (6 EEG leads and 2 EOG leads),
and the target output was the CA of the patients.

Figure 1. The Training Process. The DCNN model was trained to predict the CA of a
patient. During each iteration, the model generates a prediction for the age based on
the raw signals and optimizes an error function such that the predicted age will match
the CA as much as possible.

Figure 4. History of epilepsy/seizures, history of strokes, and severe ArI (ArI ≥ 30) ABAI population
comparison. Histograms and fitted distributions of the ABAI for each population group (see table 1 for a
summary of the p-values and means of each distribution). A statistically significant shift between the
populations was observed. (a) The orange distribution represents the epilepsy/seizures group while the green
distribution represents the no epilepsy/seizures group. (b) The orange distribution represents the strokes
group while the green distribution represents the no strokes group. (c) The orange distribution represents the
severe ArI group while the green distribution represents the no severe ArI group.

BAI ABAI

Positive 
Mean BAI

Negative 
Mean BAI

P-VALUE Positive 
Mean BAI

Negative 
Mean BAI

P-VALUE

Diabetes 0.881 -0.404 0.001 Low SE (SE <= 0.7) 5.028 4.194 0.000

Hypertension 0.461 -0.633 0.001 Severe ArI (ArI >= 30) 5.398 4.469 0.001

Depression 0.469 -0.496 0.004 Stroke 5.935 4.539 0.002

Low SE (SE <= 0.7) 0.368 -0.453 0.015 Epilepsy/Seizures 5.815 4.552 0.009

ESS (Epworth Score >= 16) 0.866 -0.209 0.021 Severe ODI 
(ODI >= 30)

5.063 4.507 0.034

Memory and Concentration 0.415 -0.285 0.049

Table 1. Distributions Summary. The positive mean BAI/ABAI and negative mean ABAI/BAI along with the p-
value comparing the means of the negative and positive distributions for all binary variables that produced
statistically significant results.

BAI ABAI
Effect [%STD] P-VALUE Effect [%STD] P-VALUE

Depression 19.6% 0.0022 ArI 0.83% 0.0000
Diabetes 16.7% 0.0134 Low SE (SE <= 0.7) 21.5% 0.0005
Hypertension 14.7% 0.0225 Severe ArI (ArI >= 30) 23.7% 0.0041
ESS (Epworth Score >= 16) 17.5% 0.0301 Stroke 36.4% 0.0062
SE -39.7% 0.0372 Epilepsy/Seizures 36.8% 0.0077
Low SE (SE <= 0.7) 12.3% 0.0431 ODI 0.36% 0.0078
BMI 0.64% 0.0504 AHI 0.36% 0.0084

Table 2. OLS summary. We ran all variables through an OLS model where each time one variable was varied while all
other variables were controlled for. The table summarizes the effect (in terms of percent standard deviation where the
sign signifies the directionality of the relationship between each variable and the BAI/ABAI) and the p-value for all
variables that produced statistically significant results.


